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A simple method is given for obtaining information about extinction and weight in the intensity statistics 
of an hkl reflexion. For this purpose, space-group transformations are directly applied; contrary to 
what seems to be a widespread view, weights are not directly correlated to extinctions. 

In many recent crystallographic programs (see, for in- 
stance, Crystallographic Computing, 1969) there is a 
marked tendency toward deriving symmetry informa- 
tion directly from symmetry operations, i.e. from the 
rotation matrices and translation vectors of each par- 
ticular space group. In our programs, written in For- 
tran IV for computers such as the IBM 7040 and the 
UNIVAC 1106, we found it particularly useful to adopt 
a straightforward procedure in order to obtain infor- 
mation about extinction, equivalence between reflex- 
ions, and statistical weights of the various Fh'S directly 
from space-group transformations, without the help 
of trigonometric expressions. A similar problem was 
solved by Bertaut (1956; see also Bertaut & Waser, 
1957). However, since our procedure seems to us to be 
more practical for computer application we are just 
giving a brief survey of it. In this survey, we are omit- 
ting the argument concerning equivalence between re- 
flexions, because our method closely follows that pro- 
posed by Patterson (1952) and Brown (1971) and no 
further comment is thought to be necessary. 

A structure factor Fh can be written as 

N N 

Fh = ~ f~(h) exp 2rci(hrx,) = ~ f,(h) 
i = l  i = I  

where fi(h)=f~(h)exp 2rci(hrxi). 
When symmetry elements are present in the cell, 

some f~ are related to each other by symmetry. For in- 
stance, if xj = Mx~ + t, it will always be: 

fj(h) =f~(Mrh). 

In fact, let us write f~(h) =f°(h)T~(h), where f°(h) is the 
scattering factor and Ti(h) the temperature factor for 

f , (h)  = f , ( M  h), the the ith atom. Considering that 0 0 T 
proof is trivial when T,(h) is isotropic. If T,(h) is aniso- 
tropic, as for instance in the case of the usual six- 
parameter temperature factor, since Bj=MB~M T, 
T,(M Th) = hTMB~MTh and Tj(h) = h rBjh = hTMB,MTh 
--T~(MTh). For more sophisticated calculations of 
Fh's, which use tensors of higher rank, such as the ex- 
pansion proposed by Johnson (1969, 1970), a similar 
procedure can be applied, ending up with the same 
result. Therefore we have: 

fj(h) =f~(Mrh) exp 2~h(hrMxi + hrt) 
= f~(Mrh) exp 2zci(hrt). 

For some reflexions where h = M r h ,  then, the phase 
difference between fj and f~ will be equal to 2zchrt, i.e. 
this will be independent of the particular atomic co- 
ordinates in the structure. Let us now consider the sub- 
group formed by the various symmetry operations con- 
nected with the powers of M. For any of these, if 
h rM = h T, we have hrM" = hTMM "- i = hrM . -  1 = h T, 
i.e. the phase difference will also be independent of the 
particular atomic coordinates. Consequently, this sub- 
group will give rise to a subset of fj's in the expression 
for Fh, each one differing from the next only in phase 
and by precisely 2zchrt. If hrt is fractional, this will 
cause the fj's to be either opposite (hrt = ½) or situated 
like vectors connecting the centre to the corners of a 
regular polygon; their sum will accordingly be zero. 
If, in addition to this subgroup other symmetry ele- 
ments are present, they may be arranged into sets, each 
of them corresponding to multiplication of a new ele- 
ment by all operations in the subgroup of the powers 
of M; the number of components in each of these sets 
is still the order of the subgroup. For instance, if a 
symmetry operation exists such as 

x~=Nx~+q,  

where N # M  k, in addition we must have operations 
of the kind 

xj. = M"(Nx~ + q) + ~ M n- tt. 
i = l  

Since 
hrxj,, = hrNx~ + hrq + nhrt = hTxj + nhrt ,  

fj, will have a phase difference of 2zmhrt with respect 
to fj. For each set, then, the same arguments can be 
applied, resulting in a total of zero if hrt is fractional. 
In practice, for a given reflexion, if any operation exists 
for which h r =  hrM and hrt is fractional, the reflexion 
is extinct, because we can apply our considerations to 
the subgroup formed by the powers of this operation. 
If hrt is integral, and p is the number of operations 
(including the identity operation) for which h r =  hrM, 
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this means that in each subset all vectors fj are parallel 
to each other (the difference in phase being a multiple 
of 2re) and the average intensity of such reflexions is 
higher than for 'ordinary' reflexions. It will be: 

N/p N 

(F2>= ~ p2f~=p ~ f ~  (Wilson, 1950). 
i=1 i=1 

Therefore, p corresponds to the statistical weight 
['pwys' according to Rogers (1965) or 'poids statistique' 
according to Bertaut (1955, 1956)] of this reflexion, a 
coefficient which is important in obtaining Wilson plots 
and normalized structure factors. 

In this respect, there seems to be some disagreement 
in the literature about the right value of p for some 
space groups. According to some authors, including 
Karle & Karle (1966), the normalized structure factor 
is defined as E~ z = F2/e ~ f 2 ,  where e should be 'a num- 
ber which corrects for space-group extinctions'. Accord- 
ing to Rogers (1965) and Bertaut (1955) we have: z=  
EZ=F2/p ~f2,  from which it seems obvious to con- 
sider p = e. However, p is different from unity even in 
cases when no extinctions are present: for instance, just 
to take an example as reported by Bertaut, in h00 re- 
flexions of space-group Prnmm, p = 4, and there are no 
extinctions. If we define E= F/(F2), in agreement with 
all authors, including Hauptman & Karle (1953), who 
defined it for the first time, remembering that <F2> = 
p~,j 2, the inconsistency of the later definition by Karle 
& Karle (1966) appears evident. As a matter of fact, 
the great majority of structures treated by direct meth- 
ods contain extinctions due to glide planes or screw 
axes, and very often the value of e=p, calculated on 
the basis of extinctions, happens to be correct (con- 
sider, for instance, the space groups P21/c or P21212t). 

As an example of the application of our method, we 
shall consider the space group P41212, whose symmetry 
transformations are represented by the following ma- 
trices and vectors: 

1 , (1); 
0 

0 , ~ (3); 
0 

0°' 1 0 , (5 ) ;  
O -  

0 - 1  
0 0 

(2); 

0,  
--1 0 

0 0 
(4); 

l° , ! i  - 1 0 , (6 ) ;  
0 0 -  

10 l 0 1 , 
0 0 -  

(7); - -1  

0 -  ¼ 
(8). 

For 00l reflexions, the transformations (2) and (3) af- 
ford the restrictions l=2n and l=4n respectively. For 
h00 reflexions, the transformation (8) affords the re- 
striction h=2n. Note that transformation (7) should 
afford the restriction k=2n  for 0k0 reflexions, which 
is a redundant one since 0k0 and h00 reflexions are 
equivalent in this space group. Non-extinct 00l re- 
flexions have their statistical weight enhanced by trans- 
formations (1), (2), (3), (4), that is, p = 4 ;  h00 refex- 
ions have p = 2  [transformations (1) and (8)]. Special 
reflexions of the hhO type have p = 2  [transformation 
(5)1. 

Non-primitive space groups deserve special mention. 
In such cases, the identity matrix, appearing with a 
non-zero translation vector, offers an explanation of 
the so-called lattice extinctions. For instance, in space 
group C2 the transformations are: 

!°!i  1 
0 

°ii 0 1 , 
0 0 -  

(1); ! 

- 1  
(3); 0 

0 

1 , (2 ) ;  
0 01 

1 }~ (4)  , • 

O -  

Here, the transformation (2) affords the restriction 
h + k = 2n on hkl reflexions (lattice extinctions). Trans- 
formation (4) affords the redundant restriction k = 2n 
for 0k0 reftexions. 
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